14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516 | class ChangeDetection:
"""A class for change detection on geospatial imagery using torchange and SAM."""
def __init__(self, sam_model_type="vit_h", sam_checkpoint=None):
"""
Initialize the ChangeDetection class.
Args:
sam_model_type (str): SAM model type ('vit_h', 'vit_l', 'vit_b')
sam_checkpoint (str): Path to SAM checkpoint file
"""
self.sam_model_type = sam_model_type
self.sam_checkpoint = sam_checkpoint
self.model = None
self._init_model()
def _init_model(self):
"""Initialize the AnyChange model."""
if self.sam_checkpoint is None:
self.sam_checkpoint = download_checkpoint(self.sam_model_type)
self.model = AnyChange(self.sam_model_type, sam_checkpoint=self.sam_checkpoint)
# Set default hyperparameters
self.model.make_mask_generator(
points_per_side=32,
stability_score_thresh=0.95,
)
self.model.set_hyperparameters(
change_confidence_threshold=145,
use_normalized_feature=True,
bitemporal_match=True,
)
def set_hyperparameters(
self,
change_confidence_threshold=155,
auto_threshold=False,
use_normalized_feature=True,
area_thresh=0.8,
match_hist=False,
object_sim_thresh=60,
bitemporal_match=True,
**kwargs,
):
"""
Set hyperparameters for the change detection model.
Args:
change_confidence_threshold (int): Change confidence threshold for SAM
auto_threshold (bool): Whether to use auto threshold for SAM
use_normalized_feature (bool): Whether to use normalized feature for SAM
area_thresh (float): Area threshold for SAM
match_hist (bool): Whether to use match hist for SAM
object_sim_thresh (int): Object similarity threshold for SAM
bitemporal_match (bool): Whether to use bitemporal match for SAM
**kwargs: Keyword arguments for model hyperparameters
"""
if self.model:
self.model.set_hyperparameters(
change_confidence_threshold=change_confidence_threshold,
auto_threshold=auto_threshold,
use_normalized_feature=use_normalized_feature,
area_thresh=area_thresh,
match_hist=match_hist,
object_sim_thresh=object_sim_thresh,
bitemporal_match=bitemporal_match,
**kwargs,
)
def set_mask_generator_params(
self,
points_per_side=32,
points_per_batch: int = 64,
pred_iou_thresh: float = 0.5,
stability_score_thresh: float = 0.95,
stability_score_offset: float = 1.0,
box_nms_thresh: float = 0.7,
point_grids=None,
min_mask_region_area: int = 0,
**kwargs,
):
"""
Set mask generator parameters.
Args:
points_per_side (int): Number of points per side for SAM
points_per_batch (int): Number of points per batch for SAM
pred_iou_thresh (float): IoU threshold for SAM
stability_score_thresh (float): Stability score threshold for SAM
stability_score_offset (float): Stability score offset for SAM
box_nms_thresh (float): NMS threshold for SAM
point_grids (list): Point grids for SAM
min_mask_region_area (int): Minimum mask region area for SAM
**kwargs: Keyword arguments for mask generator
"""
if self.model:
self.model.make_mask_generator(
points_per_side=points_per_side,
points_per_batch=points_per_batch,
pred_iou_thresh=pred_iou_thresh,
stability_score_thresh=stability_score_thresh,
stability_score_offset=stability_score_offset,
box_nms_thresh=box_nms_thresh,
point_grids=point_grids,
min_mask_region_area=min_mask_region_area,
**kwargs,
)
def _read_and_align_images(self, image1_path, image2_path, target_size=1024):
"""
Read and align two GeoTIFF images, handling different extents and projections.
Args:
image1_path (str): Path to first image
image2_path (str): Path to second image
target_size (int): Target size for processing (default 1024 for torchange)
Returns:
tuple: (aligned_img1, aligned_img2, transform, crs, bounds)
"""
with rasterio.open(image1_path) as src1, rasterio.open(image2_path) as src2:
# Get the intersection of bounds
bounds1 = src1.bounds
bounds2 = src2.bounds
# Calculate intersection bounds
left = max(bounds1.left, bounds2.left)
bottom = max(bounds1.bottom, bounds2.bottom)
right = min(bounds1.right, bounds2.right)
top = min(bounds1.top, bounds2.top)
if left >= right or bottom >= top:
raise ValueError("Images do not overlap")
intersection_bounds = (left, bottom, right, top)
# Read the intersecting area from both images
window1 = from_bounds(*intersection_bounds, src1.transform)
window2 = from_bounds(*intersection_bounds, src2.transform)
# Read data
img1_data = src1.read(window=window1)
img2_data = src2.read(window=window2)
# Get transform for the intersecting area
transform = src1.window_transform(window1)
crs = src1.crs
# Convert from (bands, height, width) to (height, width, bands)
img1_data = np.transpose(img1_data, (1, 2, 0))
img2_data = np.transpose(img2_data, (1, 2, 0))
# Use only RGB bands (first 3 channels) for torchange
if img1_data.shape[2] >= 3:
img1_data = img1_data[:, :, :3]
if img2_data.shape[2] >= 3:
img2_data = img2_data[:, :, :3]
# Normalize to 0-255 range if needed
if img1_data.dtype != np.uint8:
img1_data = (
(img1_data - img1_data.min())
/ (img1_data.max() - img1_data.min())
* 255
).astype(np.uint8)
if img2_data.dtype != np.uint8:
img2_data = (
(img2_data - img2_data.min())
/ (img2_data.max() - img2_data.min())
* 255
).astype(np.uint8)
# Store original size for later use
original_shape = img1_data.shape[:2]
# Resize to target size for torchange processing
if img1_data.shape[0] != target_size or img1_data.shape[1] != target_size:
img1_resized = resize(
img1_data, (target_size, target_size), preserve_range=True
).astype(np.uint8)
img2_resized = resize(
img2_data, (target_size, target_size), preserve_range=True
).astype(np.uint8)
else:
img1_resized = img1_data
img2_resized = img2_data
return (img1_resized, img2_resized, transform, crs, original_shape)
def detect_changes(
self,
image1_path,
image2_path,
output_path=None,
target_size=1024,
return_results=True,
export_probability=False,
probability_output_path=None,
export_instance_masks=False,
instance_masks_output_path=None,
return_detailed_results=False,
):
"""
Detect changes between two GeoTIFF images with instance segmentation.
Args:
image1_path (str): Path to first image
image2_path (str): Path to second image
output_path (str): Optional path to save binary change mask as GeoTIFF
target_size (int): Target size for processing
return_results (bool): Whether to return results
export_probability (bool): Whether to export probability mask
probability_output_path (str): Path to save probability mask (required if export_probability=True)
export_instance_masks (bool): Whether to export instance segmentation masks
instance_masks_output_path (str): Path to save instance masks (required if export_instance_masks=True)
return_detailed_results (bool): Whether to return detailed mask information
Returns:
tuple: (change_masks, img1, img2) if return_results=True
dict: Detailed results if return_detailed_results=True
"""
# Read and align images
(img1, img2, transform, crs, original_shape) = self._read_and_align_images(
image1_path, image2_path, target_size
)
# Detect changes
change_masks, _, _ = self.model.forward(img1, img2)
# If output path specified, save binary mask as GeoTIFF
if output_path:
self._save_change_mask(
change_masks, output_path, transform, crs, original_shape, target_size
)
# If probability export requested, save probability mask
if export_probability:
if probability_output_path is None:
raise ValueError(
"probability_output_path must be specified when export_probability=True"
)
self._save_probability_mask(
change_masks,
probability_output_path,
transform,
crs,
original_shape,
target_size,
)
# If instance masks export requested, save instance segmentation masks
if export_instance_masks:
if instance_masks_output_path is None:
raise ValueError(
"instance_masks_output_path must be specified when export_instance_masks=True"
)
num_instances = self._save_instance_segmentation_masks(
change_masks,
instance_masks_output_path,
transform,
crs,
original_shape,
target_size,
)
# Also save instance scores if requested
scores_path = instance_masks_output_path.replace(".tif", "_scores.tif")
self._save_instance_scores_mask(
change_masks,
scores_path,
transform,
crs,
original_shape,
target_size,
)
# Return detailed results if requested
if return_detailed_results:
return self._extract_detailed_results(
change_masks, transform, crs, original_shape, target_size
)
if return_results:
return change_masks, img1, img2
def _save_change_mask(
self, change_masks, output_path, transform, crs, original_shape, target_size
):
"""
Save change masks as a GeoTIFF with proper georeference.
Args:
change_masks: Change detection masks (MaskData object)
output_path (str): Output file path
transform: Rasterio transform
crs: Coordinate reference system
original_shape (tuple): Original image shape
target_size (int): Processing target size
"""
# Convert MaskData to binary mask by decoding RLE masks
combined_mask = np.zeros((target_size, target_size), dtype=bool)
# Extract RLE masks from MaskData object
mask_items = dict(change_masks.items())
if "rles" in mask_items:
rles = mask_items["rles"]
for rle in rles:
if isinstance(rle, dict) and "size" in rle and "counts" in rle:
try:
# Decode RLE to binary mask
size = rle["size"]
counts = rle["counts"]
# Create binary mask from RLE counts
mask = np.zeros(size[0] * size[1], dtype=np.uint8)
pos = 0
value = 0
for count in counts:
if pos + count <= len(mask):
if value == 1:
mask[pos : pos + count] = 1
pos += count
value = 1 - value # Toggle between 0 and 1
else:
break
# RLE is column-major, reshape and transpose
mask = mask.reshape(size).T
if mask.shape == (target_size, target_size):
combined_mask = np.logical_or(
combined_mask, mask.astype(bool)
)
except Exception as e:
print(f"Warning: Failed to decode RLE mask: {e}")
continue
# Convert to uint8 first, then resize if needed
combined_mask_uint8 = combined_mask.astype(np.uint8) * 255
# Resize back to original shape if needed
if original_shape != (target_size, target_size):
# Use precise resize
combined_mask_resized = resize(
combined_mask_uint8.astype(np.float32),
original_shape,
preserve_range=True,
anti_aliasing=False,
order=0,
)
combined_mask = (combined_mask_resized > 127).astype(np.uint8) * 255
else:
combined_mask = combined_mask_uint8
# Save as GeoTIFF
with rasterio.open(
output_path,
"w",
driver="GTiff",
height=combined_mask.shape[0],
width=combined_mask.shape[1],
count=1,
dtype=combined_mask.dtype,
crs=crs,
transform=transform,
compress="lzw",
) as dst:
dst.write(combined_mask, 1)
def _save_probability_mask(
self, change_masks, output_path, transform, crs, original_shape, target_size
):
"""
Save probability masks as a GeoTIFF with proper georeference.
Args:
change_masks: Change detection masks (MaskData object)
output_path (str): Output file path
transform: Rasterio transform
crs: Coordinate reference system
original_shape (tuple): Original image shape
target_size (int): Processing target size
"""
# Extract mask components for probability calculation
mask_items = dict(change_masks.items())
rles = mask_items.get("rles", [])
iou_preds = mask_items.get("iou_preds", None)
stability_scores = mask_items.get("stability_score", None)
change_confidence = mask_items.get("change_confidence", None)
areas = mask_items.get("areas", None)
# Convert tensors to numpy if needed
if iou_preds is not None:
iou_preds = iou_preds.detach().cpu().numpy()
if stability_scores is not None:
stability_scores = stability_scores.detach().cpu().numpy()
if change_confidence is not None:
change_confidence = change_confidence.detach().cpu().numpy()
if areas is not None:
areas = areas.detach().cpu().numpy()
# Create probability mask
probability_mask = np.zeros((target_size, target_size), dtype=np.float32)
# Process each mask with probability weighting
for i, rle in enumerate(rles):
if isinstance(rle, dict) and "size" in rle and "counts" in rle:
try:
# Decode RLE to binary mask
size = rle["size"]
counts = rle["counts"]
mask = np.zeros(size[0] * size[1], dtype=np.uint8)
pos = 0
value = 0
for count in counts:
if pos + count <= len(mask):
if value == 1:
mask[pos : pos + count] = 1
pos += count
value = 1 - value
else:
break
mask = mask.reshape(size).T
if mask.shape != (target_size, target_size):
continue
mask_bool = mask.astype(bool)
# Calculate probability using multiple factors
prob_components = []
# IoU prediction (0-1, higher is better)
if iou_preds is not None and i < len(iou_preds):
iou_score = float(iou_preds[i])
prob_components.append(("iou", iou_score))
else:
prob_components.append(("iou", 0.8))
# Stability score (0-1, higher is better)
if stability_scores is not None and i < len(stability_scores):
stability = float(stability_scores[i])
prob_components.append(("stability", stability))
else:
prob_components.append(("stability", 0.8))
# Change confidence (normalize based on threshold)
if change_confidence is not None and i < len(change_confidence):
conf = float(change_confidence[i])
# Normalize confidence: threshold is 145, values above indicate higher confidence
if conf >= 145:
conf_normalized = 0.5 + min(0.5, (conf - 145) / 145)
else:
conf_normalized = max(0.0, conf / 145 * 0.5)
prob_components.append(("confidence", conf_normalized))
else:
prob_components.append(("confidence", 0.5))
# Area-based weight (normalize using log scale)
if areas is not None and i < len(areas):
area = float(areas[i])
area_normalized = 0.2 + 0.8 * min(1.0, np.log(area + 1) / 15.0)
prob_components.append(("area", area_normalized))
else:
prob_components.append(("area", 0.6))
# Calculate weighted probability
weights = {
"iou": 0.3,
"stability": 0.3,
"confidence": 0.35,
"area": 0.05,
}
prob_weight = sum(
weights[name] * value for name, value in prob_components
)
prob_weight = np.clip(prob_weight, 0.0, 1.0)
# Add to probability mask (take maximum where masks overlap)
current_prob = probability_mask[mask_bool]
new_prob = np.maximum(current_prob, prob_weight)
probability_mask[mask_bool] = new_prob
except Exception as e:
print(f"Warning: Failed to process probability mask {i}: {e}")
continue
# Resize back to original shape if needed
if original_shape != (target_size, target_size):
prob_resized = resize(
probability_mask,
original_shape,
preserve_range=True,
anti_aliasing=True,
order=1,
)
prob_final = np.clip(prob_resized, 0.0, 1.0)
else:
prob_final = probability_mask
# Save as float32 GeoTIFF
with rasterio.open(
output_path,
"w",
driver="GTiff",
height=prob_final.shape[0],
width=prob_final.shape[1],
count=1,
dtype=rasterio.float32,
crs=crs,
transform=transform,
compress="lzw",
) as dst:
dst.write(prob_final.astype(np.float32), 1)
def visualize_changes(self, image1_path, image2_path, figsize=(15, 5)):
"""
Visualize change detection results.
Args:
image1_path (str): Path to first image
image2_path (str): Path to second image
figsize (tuple): Figure size
Returns:
matplotlib.figure.Figure: The figure object
"""
change_masks, img1, img2 = self.detect_changes(
image1_path, image2_path, return_results=True
)
# Use torchange's visualization function
fig, _ = show_change_masks(img1, img2, change_masks)
fig.set_size_inches(figsize)
return fig
def visualize_results(self, image1_path, image2_path, binary_path, prob_path):
"""Create enhanced visualization with probability analysis."""
# Load data
with rasterio.open(image1_path) as src:
img1 = src.read([1, 2, 3])
img1 = np.transpose(img1, (1, 2, 0))
with rasterio.open(image2_path) as src:
img2 = src.read([1, 2, 3])
img2 = np.transpose(img2, (1, 2, 0))
with rasterio.open(binary_path) as src:
binary_mask = src.read(1)
with rasterio.open(prob_path) as src:
prob_mask = src.read(1)
# Create comprehensive visualization
fig, axes = plt.subplots(2, 4, figsize=(24, 12))
# Crop for better visualization
h, w = img1.shape[:2]
y1, y2 = h // 4, 3 * h // 4
x1, x2 = w // 4, 3 * w // 4
img1_crop = img1[y1:y2, x1:x2]
img2_crop = img2[y1:y2, x1:x2]
binary_crop = binary_mask[y1:y2, x1:x2]
prob_crop = prob_mask[y1:y2, x1:x2]
# Row 1: Original and overlays
axes[0, 0].imshow(img1_crop)
axes[0, 0].set_title("2019 Image", fontweight="bold")
axes[0, 0].axis("off")
axes[0, 1].imshow(img2_crop)
axes[0, 1].set_title("2022 Image", fontweight="bold")
axes[0, 1].axis("off")
# Binary overlay
overlay_binary = img2_crop.copy()
overlay_binary[binary_crop > 0] = [255, 0, 0]
axes[0, 2].imshow(overlay_binary)
axes[0, 2].set_title("Binary Changes\n(Red = Change)", fontweight="bold")
axes[0, 2].axis("off")
# Probability heatmap
im1 = axes[0, 3].imshow(prob_crop, cmap="hot", vmin=0, vmax=1)
axes[0, 3].set_title(
"Probability Heatmap\n(White = High Confidence)", fontweight="bold"
)
axes[0, 3].axis("off")
plt.colorbar(im1, ax=axes[0, 3], shrink=0.8)
# Row 2: Detailed probability analysis
# Confidence levels overlay
overlay_conf = img2_crop.copy()
high_conf = prob_crop > 0.7
med_conf = (prob_crop > 0.4) & (prob_crop <= 0.7)
low_conf = (prob_crop > 0.1) & (prob_crop <= 0.4)
overlay_conf[high_conf] = [255, 0, 0] # Red for high
overlay_conf[med_conf] = [255, 165, 0] # Orange for medium
overlay_conf[low_conf] = [255, 255, 0] # Yellow for low
axes[1, 0].imshow(overlay_conf)
axes[1, 0].set_title(
"Confidence Levels\n(Red>0.7, Orange>0.4, Yellow>0.1)", fontweight="bold"
)
axes[1, 0].axis("off")
# Thresholded probability (>0.5)
overlay_thresh = img2_crop.copy()
high_prob = prob_crop > 0.5
overlay_thresh[high_prob] = [255, 0, 0]
axes[1, 1].imshow(overlay_thresh)
axes[1, 1].set_title(
"High Confidence Only\n(Probability > 0.5)", fontweight="bold"
)
axes[1, 1].axis("off")
# Probability histogram
prob_values = prob_crop[prob_crop > 0]
if len(prob_values) > 0:
axes[1, 2].hist(
prob_values, bins=50, alpha=0.7, color="red", edgecolor="black"
)
axes[1, 2].axvline(
x=0.5, color="blue", linestyle="--", label="0.5 threshold"
)
axes[1, 2].axvline(
x=0.7, color="green", linestyle="--", label="0.7 threshold"
)
axes[1, 2].set_xlabel("Change Probability")
axes[1, 2].set_ylabel("Pixel Count")
axes[1, 2].set_title(
f"Probability Distribution\n({len(prob_values):,} pixels)"
)
axes[1, 2].legend()
axes[1, 2].grid(True, alpha=0.3)
# Statistics text
stats_text = f"""Probability Statistics:
Min: {np.min(prob_values):.3f}
Max: {np.max(prob_values):.3f}
Mean: {np.mean(prob_values):.3f}
Median: {np.median(prob_values):.3f}
Confidence Levels:
High (>0.7): {np.sum(prob_crop > 0.7):,}
Med (0.4-0.7): {np.sum((prob_crop > 0.4) & (prob_crop <= 0.7)):,}
Low (0.1-0.4): {np.sum((prob_crop > 0.1) & (prob_crop <= 0.4)):,}"""
axes[1, 3].text(
0.05,
0.95,
stats_text,
transform=axes[1, 3].transAxes,
fontsize=11,
verticalalignment="top",
fontfamily="monospace",
)
axes[1, 3].set_xlim(0, 1)
axes[1, 3].set_ylim(0, 1)
axes[1, 3].axis("off")
axes[1, 3].set_title("Statistics Summary", fontweight="bold")
plt.tight_layout()
plt.suptitle(
"Enhanced Probability-Based Change Detection",
fontsize=16,
fontweight="bold",
y=0.98,
)
plt.savefig("enhanced_probability_results.png", dpi=150, bbox_inches="tight")
plt.show()
print("💾 Enhanced visualization saved as 'enhanced_probability_results.png'")
def create_split_comparison(
self,
image1_path,
image2_path,
binary_path,
prob_path,
output_path="split_comparison.png",
):
"""Create a split comparison visualization showing before/after with change overlay."""
# Load data
with rasterio.open(image1_path) as src:
img1 = src.read([1, 2, 3])
img1 = np.transpose(img1, (1, 2, 0))
if img1.dtype != np.uint8:
img1 = ((img1 - img1.min()) / (img1.max() - img1.min()) * 255).astype(
np.uint8
)
with rasterio.open(image2_path) as src:
img2 = src.read([1, 2, 3])
img2 = np.transpose(img2, (1, 2, 0))
if img2.dtype != np.uint8:
img2 = ((img2 - img2.min()) / (img2.max() - img2.min()) * 255).astype(
np.uint8
)
with rasterio.open(prob_path) as src:
prob_mask = src.read(1)
# Ensure all arrays have the same shape
h, w = img1.shape[:2]
if prob_mask.shape != (h, w):
prob_mask = resize(
prob_mask, (h, w), preserve_range=True, anti_aliasing=True, order=1
)
# Create split comparison
fig, ax = plt.subplots(1, 1, figsize=(15, 10))
# Create combined image - left half is 2019, right half is 2022
combined_img = np.zeros_like(img1)
combined_img[:, : w // 2] = img1[:, : w // 2]
combined_img[:, w // 2 :] = img2[:, w // 2 :]
# Create overlay with changes - ensure prob_mask is 2D and matches image dimensions
overlay = combined_img.copy()
high_conf_changes = prob_mask > 0.5
# Apply overlay only where changes are detected
if len(overlay.shape) == 3: # RGB image
overlay[high_conf_changes] = [255, 0, 0] # Red for high confidence changes
# Blend overlay with original
blended = cv2.addWeighted(combined_img, 0.7, overlay, 0.3, 0)
ax.imshow(blended)
ax.axvline(x=w // 2, color="white", linewidth=3, linestyle="--", alpha=0.8)
ax.text(
w // 4,
50,
"2019",
fontsize=20,
color="white",
ha="center",
bbox={"boxstyle": "round,pad=0.3", "facecolor": "black", "alpha": 0.8},
)
ax.text(
3 * w // 4,
50,
"2022",
fontsize=20,
color="white",
ha="center",
bbox={"boxstyle": "round,pad=0.3", "facecolor": "black", "alpha": 0.8},
)
ax.set_title(
"Split Comparison with Change Detection\n(Red = High Confidence Changes)",
fontsize=16,
fontweight="bold",
pad=20,
)
ax.axis("off")
plt.tight_layout()
plt.savefig(output_path, dpi=150, bbox_inches="tight")
plt.show()
print(f"💾 Split comparison saved as '{output_path}'")
def analyze_instances(
self, instance_mask_path, scores_path, output_path="instance_analysis.png"
):
"""Analyze and visualize instance segmentation results."""
# Load instance mask and scores
with rasterio.open(instance_mask_path) as src:
instance_mask = src.read(1)
with rasterio.open(scores_path) as src:
scores_mask = src.read(1)
# Get unique instances (excluding background)
unique_instances = np.unique(instance_mask)
unique_instances = unique_instances[unique_instances > 0]
# Calculate statistics for each instance
instance_stats = []
for instance_id in unique_instances:
mask = instance_mask == instance_id
area = np.sum(mask)
score = np.mean(scores_mask[mask])
instance_stats.append({"id": instance_id, "area": area, "score": score})
# Sort by score
instance_stats.sort(key=lambda x: x["score"], reverse=True)
# Create visualization
fig, axes = plt.subplots(2, 2, figsize=(16, 12))
# 1. Instance segmentation visualization
colored_mask = np.zeros((*instance_mask.shape, 3), dtype=np.uint8)
colors = plt.cm.Set3(np.linspace(0, 1, len(unique_instances)))
for i, instance_id in enumerate(unique_instances):
mask = instance_mask == instance_id
colored_mask[mask] = (colors[i][:3] * 255).astype(np.uint8)
axes[0, 0].imshow(colored_mask)
axes[0, 0].set_title(
f"Instance Segmentation\n({len(unique_instances)} instances)",
fontweight="bold",
)
axes[0, 0].axis("off")
# 2. Scores heatmap
im = axes[0, 1].imshow(scores_mask, cmap="viridis", vmin=0, vmax=1)
axes[0, 1].set_title("Instance Confidence Scores", fontweight="bold")
axes[0, 1].axis("off")
plt.colorbar(im, ax=axes[0, 1], shrink=0.8)
# 3. Score distribution
all_scores = [stat["score"] for stat in instance_stats]
axes[1, 0].hist(
all_scores, bins=20, alpha=0.7, color="skyblue", edgecolor="black"
)
axes[1, 0].axvline(
x=np.mean(all_scores),
color="red",
linestyle="--",
label=f"Mean: {np.mean(all_scores):.3f}",
)
axes[1, 0].set_xlabel("Confidence Score")
axes[1, 0].set_ylabel("Instance Count")
axes[1, 0].set_title("Score Distribution", fontweight="bold")
axes[1, 0].legend()
axes[1, 0].grid(True, alpha=0.3)
# 4. Top instances by score
top_instances = instance_stats[:10]
instance_ids = [stat["id"] for stat in top_instances]
scores = [stat["score"] for stat in top_instances]
areas = [stat["area"] for stat in top_instances]
bars = axes[1, 1].bar(
range(len(top_instances)), scores, color="coral", alpha=0.7
)
axes[1, 1].set_xlabel("Top 10 Instances")
axes[1, 1].set_ylabel("Confidence Score")
axes[1, 1].set_title("Top Instances by Confidence", fontweight="bold")
axes[1, 1].set_xticks(range(len(top_instances)))
axes[1, 1].set_xticklabels([f"#{id}" for id in instance_ids], rotation=45)
# Add area info as text on bars
for i, (bar, area) in enumerate(zip(bars, areas)):
height = bar.get_height()
axes[1, 1].text(
bar.get_x() + bar.get_width() / 2.0,
height,
f"{area}px",
ha="center",
va="bottom",
fontsize=8,
)
plt.tight_layout()
plt.savefig(output_path, dpi=150, bbox_inches="tight")
plt.show()
# Print summary statistics
print(f"\n📊 Instance Analysis Summary:")
print(f" Total instances: {len(unique_instances)}")
print(f" Average confidence: {np.mean(all_scores):.3f}")
print(f" Score range: {np.min(all_scores):.3f} - {np.max(all_scores):.3f}")
print(f" Total change area: {sum(areas):,} pixels")
print(f"\n💾 Instance analysis saved as '{output_path}'")
return instance_stats
def create_comprehensive_report(
self, results_dict, output_path="comprehensive_report.png"
):
"""Create a comprehensive visualization report from detailed results."""
if not results_dict or "masks" not in results_dict:
print("❌ No detailed results provided")
return
masks = results_dict["masks"]
stats = results_dict["statistics"]
# Create comprehensive visualization
fig, axes = plt.subplots(2, 3, figsize=(18, 12))
# 1. Score distributions
if "iou_predictions" in stats:
iou_scores = [
mask["iou_pred"] for mask in masks if mask["iou_pred"] is not None
]
axes[0, 0].hist(
iou_scores, bins=20, alpha=0.7, color="lightblue", edgecolor="black"
)
axes[0, 0].axvline(
x=stats["iou_predictions"]["mean"],
color="red",
linestyle="--",
label=f"Mean: {stats['iou_predictions']['mean']:.3f}",
)
axes[0, 0].set_xlabel("IoU Score")
axes[0, 0].set_ylabel("Count")
axes[0, 0].set_title("IoU Predictions Distribution", fontweight="bold")
axes[0, 0].legend()
axes[0, 0].grid(True, alpha=0.3)
# 2. Stability scores
if "stability_scores" in stats:
stability_scores = [
mask["stability_score"]
for mask in masks
if mask["stability_score"] is not None
]
axes[0, 1].hist(
stability_scores,
bins=20,
alpha=0.7,
color="lightgreen",
edgecolor="black",
)
axes[0, 1].axvline(
x=stats["stability_scores"]["mean"],
color="red",
linestyle="--",
label=f"Mean: {stats['stability_scores']['mean']:.3f}",
)
axes[0, 1].set_xlabel("Stability Score")
axes[0, 1].set_ylabel("Count")
axes[0, 1].set_title("Stability Scores Distribution", fontweight="bold")
axes[0, 1].legend()
axes[0, 1].grid(True, alpha=0.3)
# 3. Change confidence
if "change_confidence" in stats:
change_conf = [
mask["change_confidence"]
for mask in masks
if mask["change_confidence"] is not None
]
axes[0, 2].hist(
change_conf, bins=20, alpha=0.7, color="lightyellow", edgecolor="black"
)
axes[0, 2].axvline(
x=stats["change_confidence"]["mean"],
color="red",
linestyle="--",
label=f"Mean: {stats['change_confidence']['mean']:.1f}",
)
axes[0, 2].set_xlabel("Change Confidence")
axes[0, 2].set_ylabel("Count")
axes[0, 2].set_title("Change Confidence Distribution", fontweight="bold")
axes[0, 2].legend()
axes[0, 2].grid(True, alpha=0.3)
# 4. Area distribution
if "areas" in stats:
areas = [mask["area"] for mask in masks if mask["area"] is not None]
axes[1, 0].hist(
areas, bins=20, alpha=0.7, color="lightcoral", edgecolor="black"
)
axes[1, 0].axvline(
x=stats["areas"]["mean"],
color="red",
linestyle="--",
label=f"Mean: {stats['areas']['mean']:.1f}",
)
axes[1, 0].set_xlabel("Area (pixels)")
axes[1, 0].set_ylabel("Count")
axes[1, 0].set_title("Area Distribution", fontweight="bold")
axes[1, 0].legend()
axes[1, 0].grid(True, alpha=0.3)
# 5. Combined confidence vs area scatter
combined_conf = [
mask["combined_confidence"]
for mask in masks
if "combined_confidence" in mask
]
areas_for_scatter = [
mask["area"]
for mask in masks
if "combined_confidence" in mask and mask["area"] is not None
]
if combined_conf and areas_for_scatter:
scatter = axes[1, 1].scatter(
areas_for_scatter,
combined_conf,
alpha=0.6,
c=combined_conf,
cmap="viridis",
s=50,
)
axes[1, 1].set_xlabel("Area (pixels)")
axes[1, 1].set_ylabel("Combined Confidence")
axes[1, 1].set_title("Confidence vs Area", fontweight="bold")
axes[1, 1].grid(True, alpha=0.3)
plt.colorbar(scatter, ax=axes[1, 1], shrink=0.8)
# 6. Summary statistics text
summary_text = f"""Detection Summary:
Total Instances: {len(masks)}
Processing Size: {results_dict['summary']['target_size']}
Original Shape: {results_dict['summary']['original_shape']}
Quality Metrics:"""
if "iou_predictions" in stats:
summary_text += f"""
IoU Predictions:
Mean: {stats['iou_predictions']['mean']:.3f}
Range: {stats['iou_predictions']['min']:.3f} - {stats['iou_predictions']['max']:.3f}"""
if "stability_scores" in stats:
summary_text += f"""
Stability Scores:
Mean: {stats['stability_scores']['mean']:.3f}
Range: {stats['stability_scores']['min']:.3f} - {stats['stability_scores']['max']:.3f}"""
if "change_confidence" in stats:
summary_text += f"""
Change Confidence:
Mean: {stats['change_confidence']['mean']:.1f}
Range: {stats['change_confidence']['min']:.1f} - {stats['change_confidence']['max']:.1f}"""
if "areas" in stats:
summary_text += f"""
Areas:
Mean: {stats['areas']['mean']:.1f}
Total: {stats['areas']['total']:,.0f} pixels"""
axes[1, 2].text(
0.05,
0.95,
summary_text,
transform=axes[1, 2].transAxes,
fontsize=10,
verticalalignment="top",
fontfamily="monospace",
)
axes[1, 2].set_xlim(0, 1)
axes[1, 2].set_ylim(0, 1)
axes[1, 2].axis("off")
axes[1, 2].set_title("Summary Statistics", fontweight="bold")
plt.tight_layout()
plt.suptitle(
"Comprehensive Change Detection Report",
fontsize=16,
fontweight="bold",
y=0.98,
)
plt.savefig(output_path, dpi=150, bbox_inches="tight")
plt.show()
print(f"💾 Comprehensive report saved as '{output_path}'")
def run_complete_analysis(
self, image1_path, image2_path, output_dir="change_detection_results"
):
"""Run complete change detection analysis with all outputs and visualizations."""
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Define output paths
binary_path = os.path.join(output_dir, "binary_mask.tif")
prob_path = os.path.join(output_dir, "probability_mask.tif")
instance_path = os.path.join(output_dir, "instance_masks.tif")
print("🔍 Running complete change detection analysis...")
# Run detection with all outputs
results = self.detect_changes(
image1_path,
image2_path,
output_path=binary_path,
export_probability=True,
probability_output_path=prob_path,
export_instance_masks=True,
instance_masks_output_path=instance_path,
return_detailed_results=True,
return_results=False,
)
print("📊 Creating visualizations...")
# Create all visualizations
self.visualize_results(image1_path, image2_path, binary_path, prob_path)
self.create_split_comparison(
image1_path,
image2_path,
binary_path,
prob_path,
os.path.join(output_dir, "split_comparison.png"),
)
scores_path = instance_path.replace(".tif", "_scores.tif")
self.analyze_instances(
instance_path,
scores_path,
os.path.join(output_dir, "instance_analysis.png"),
)
self.create_comprehensive_report(
results, os.path.join(output_dir, "comprehensive_report.png")
)
print(f"✅ Complete analysis finished! Results saved to: {output_dir}")
return results
def _save_instance_segmentation_masks(
self, change_masks, output_path, transform, crs, original_shape, target_size
):
"""
Save instance segmentation masks as a single GeoTIFF where each instance has a unique ID.
Args:
change_masks: Change detection masks (MaskData object)
output_path (str): Output path for instance segmentation GeoTIFF
transform: Rasterio transform
crs: Coordinate reference system
original_shape (tuple): Original image shape
target_size (int): Processing target size
"""
# Extract mask components
mask_items = dict(change_masks.items())
rles = mask_items.get("rles", [])
# Create instance segmentation mask (each instance gets unique ID)
instance_mask = np.zeros((target_size, target_size), dtype=np.uint16)
# Process each mask and assign unique instance ID
for instance_id, rle in enumerate(rles, start=1):
if isinstance(rle, dict) and "size" in rle and "counts" in rle:
try:
# Decode RLE to binary mask
size = rle["size"]
counts = rle["counts"]
mask = np.zeros(size[0] * size[1], dtype=np.uint8)
pos = 0
value = 0
for count in counts:
if pos + count <= len(mask):
if value == 1:
mask[pos : pos + count] = 1
pos += count
value = 1 - value
else:
break
# RLE is column-major, reshape and transpose
mask = mask.reshape(size).T
if mask.shape != (target_size, target_size):
continue
# Assign instance ID to this mask
instance_mask[mask.astype(bool)] = instance_id
except Exception as e:
print(f"Warning: Failed to process mask {instance_id}: {e}")
continue
# Resize back to original shape if needed
if original_shape != (target_size, target_size):
instance_mask_resized = resize(
instance_mask.astype(np.float32),
original_shape,
preserve_range=True,
anti_aliasing=False,
order=0,
)
instance_mask_final = np.round(instance_mask_resized).astype(np.uint16)
else:
instance_mask_final = instance_mask
# Save as GeoTIFF
with rasterio.open(
output_path,
"w",
driver="GTiff",
height=instance_mask_final.shape[0],
width=instance_mask_final.shape[1],
count=1,
dtype=instance_mask_final.dtype,
crs=crs,
transform=transform,
compress="lzw",
) as dst:
dst.write(instance_mask_final, 1)
# Add metadata
dst.update_tags(
description="Instance segmentation mask with unique IDs for each change object",
total_instances=str(len(rles)),
background_value="0",
instance_range=f"1-{len(rles)}",
)
print(
f"Saved instance segmentation mask with {len(rles)} instances to {output_path}"
)
return len(rles)
def _save_instance_scores_mask(
self, change_masks, output_path, transform, crs, original_shape, target_size
):
"""
Save instance scores/probability mask as a GeoTIFF where each instance has its confidence score.
Args:
change_masks: Change detection masks (MaskData object)
output_path (str): Output path for instance scores GeoTIFF
transform: Rasterio transform
crs: Coordinate reference system
original_shape (tuple): Original image shape
target_size (int): Processing target size
"""
# Extract mask components
mask_items = dict(change_masks.items())
rles = mask_items.get("rles", [])
iou_preds = mask_items.get("iou_preds", None)
stability_scores = mask_items.get("stability_score", None)
change_confidence = mask_items.get("change_confidence", None)
# Convert tensors to numpy if needed
if iou_preds is not None:
iou_preds = iou_preds.detach().cpu().numpy()
if stability_scores is not None:
stability_scores = stability_scores.detach().cpu().numpy()
if change_confidence is not None:
change_confidence = change_confidence.detach().cpu().numpy()
# Create instance scores mask
scores_mask = np.zeros((target_size, target_size), dtype=np.float32)
# Process each mask and assign confidence score
for instance_id, rle in enumerate(rles):
if isinstance(rle, dict) and "size" in rle and "counts" in rle:
try:
# Decode RLE to binary mask
size = rle["size"]
counts = rle["counts"]
mask = np.zeros(size[0] * size[1], dtype=np.uint8)
pos = 0
value = 0
for count in counts:
if pos + count <= len(mask):
if value == 1:
mask[pos : pos + count] = 1
pos += count
value = 1 - value
else:
break
# RLE is column-major, reshape and transpose
mask = mask.reshape(size).T
if mask.shape != (target_size, target_size):
continue
# Calculate combined confidence score
confidence_score = 0.5 # Default
if iou_preds is not None and instance_id < len(iou_preds):
iou_score = float(iou_preds[instance_id])
if stability_scores is not None and instance_id < len(
stability_scores
):
stability_score = float(stability_scores[instance_id])
if change_confidence is not None and instance_id < len(
change_confidence
):
change_conf = float(change_confidence[instance_id])
# Normalize change confidence (typically around 145 threshold)
change_conf_norm = max(
0.0, min(1.0, abs(change_conf) / 200.0)
)
# Weighted combination of scores
confidence_score = (
0.35 * iou_score
+ 0.35 * stability_score
+ 0.3 * change_conf_norm
)
else:
confidence_score = 0.5 * (iou_score + stability_score)
else:
confidence_score = iou_score
# Assign confidence score to this mask
scores_mask[mask.astype(bool)] = confidence_score
except Exception as e:
print(
f"Warning: Failed to process scores for mask {instance_id}: {e}"
)
continue
# Resize back to original shape if needed
if original_shape != (target_size, target_size):
scores_mask_resized = resize(
scores_mask,
original_shape,
preserve_range=True,
anti_aliasing=True,
order=1,
)
scores_mask_final = np.clip(scores_mask_resized, 0.0, 1.0).astype(
np.float32
)
else:
scores_mask_final = scores_mask
# Save as GeoTIFF
with rasterio.open(
output_path,
"w",
driver="GTiff",
height=scores_mask_final.shape[0],
width=scores_mask_final.shape[1],
count=1,
dtype=scores_mask_final.dtype,
crs=crs,
transform=transform,
compress="lzw",
) as dst:
dst.write(scores_mask_final, 1)
# Add metadata
dst.update_tags(
description="Instance scores mask with confidence values for each change object",
total_instances=str(len(rles)),
background_value="0.0",
score_range="0.0-1.0",
)
print(f"Saved instance scores mask with {len(rles)} instances to {output_path}")
return len(rles)
def _extract_detailed_results(
self, change_masks, transform, crs, original_shape, target_size
):
"""
Extract detailed results from change masks.
Args:
change_masks: Change detection masks (MaskData object)
transform: Rasterio transform
crs: Coordinate reference system
original_shape (tuple): Original image shape
target_size (int): Processing target size
Returns:
dict: Detailed results with mask information and statistics
"""
# Extract mask components
mask_items = dict(change_masks.items())
rles = mask_items.get("rles", [])
iou_preds = mask_items.get("iou_preds", None)
stability_scores = mask_items.get("stability_score", None)
change_confidence = mask_items.get("change_confidence", None)
areas = mask_items.get("areas", None)
boxes = mask_items.get("boxes", None)
points = mask_items.get("points", None)
# Convert tensors to numpy if needed
if iou_preds is not None:
iou_preds = iou_preds.detach().cpu().numpy()
if stability_scores is not None:
stability_scores = stability_scores.detach().cpu().numpy()
if change_confidence is not None:
change_confidence = change_confidence.detach().cpu().numpy()
if areas is not None:
areas = areas.detach().cpu().numpy()
if boxes is not None:
boxes = boxes.detach().cpu().numpy()
if points is not None:
points = points.detach().cpu().numpy()
# Calculate statistics
results = {
"summary": {
"total_masks": len(rles),
"target_size": target_size,
"original_shape": original_shape,
"crs": str(crs),
"transform": transform.to_gdal(),
},
"statistics": {},
"masks": [],
}
# Calculate statistics for each metric
if iou_preds is not None and len(iou_preds) > 0:
results["statistics"]["iou_predictions"] = {
"mean": float(np.mean(iou_preds)),
"std": float(np.std(iou_preds)),
"min": float(np.min(iou_preds)),
"max": float(np.max(iou_preds)),
"median": float(np.median(iou_preds)),
}
if stability_scores is not None and len(stability_scores) > 0:
results["statistics"]["stability_scores"] = {
"mean": float(np.mean(stability_scores)),
"std": float(np.std(stability_scores)),
"min": float(np.min(stability_scores)),
"max": float(np.max(stability_scores)),
"median": float(np.median(stability_scores)),
}
if change_confidence is not None and len(change_confidence) > 0:
results["statistics"]["change_confidence"] = {
"mean": float(np.mean(change_confidence)),
"std": float(np.std(change_confidence)),
"min": float(np.min(change_confidence)),
"max": float(np.max(change_confidence)),
"median": float(np.median(change_confidence)),
}
if areas is not None and len(areas) > 0:
results["statistics"]["areas"] = {
"mean": float(np.mean(areas)),
"std": float(np.std(areas)),
"min": float(np.min(areas)),
"max": float(np.max(areas)),
"median": float(np.median(areas)),
"total": float(np.sum(areas)),
}
# Extract individual mask details
for i in range(len(rles)):
mask_info = {
"mask_id": i,
"iou_pred": (
float(iou_preds[i])
if iou_preds is not None and i < len(iou_preds)
else None
),
"stability_score": (
float(stability_scores[i])
if stability_scores is not None and i < len(stability_scores)
else None
),
"change_confidence": (
float(change_confidence[i])
if change_confidence is not None and i < len(change_confidence)
else None
),
"area": int(areas[i]) if areas is not None and i < len(areas) else None,
"bbox": (
boxes[i].tolist() if boxes is not None and i < len(boxes) else None
),
"center_point": (
points[i].tolist()
if points is not None and i < len(points)
else None
),
}
# Calculate combined confidence score
if all(
v is not None
for v in [
mask_info["iou_pred"],
mask_info["stability_score"],
mask_info["change_confidence"],
]
):
# Normalize change confidence (145 is typical threshold)
conf_norm = max(0.0, min(1.0, mask_info["change_confidence"] / 145.0))
combined_score = (
0.3 * mask_info["iou_pred"]
+ 0.3 * mask_info["stability_score"]
+ 0.4 * conf_norm
)
mask_info["combined_confidence"] = float(combined_score)
results["masks"].append(mask_info)
# Sort masks by combined confidence if available
if results["masks"] and "combined_confidence" in results["masks"][0]:
results["masks"].sort(key=lambda x: x["combined_confidence"], reverse=True)
return results
|