timm_train module¶
Module for training and fine-tuning models using timm (PyTorch Image Models) with remote sensing imagery.
RemoteSensingDataset
¶
Bases: Dataset
Dataset for remote sensing imagery classification.
This dataset handles loading raster images and their corresponding labels for training classification models.
Source code in geoai/timm_train.py
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
__init__(image_paths, labels, transform=None, num_channels=None)
¶
Initialize RemoteSensingDataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image_paths
|
List[str]
|
List of paths to image files. |
required |
labels
|
List[int]
|
List of integer labels corresponding to images. |
required |
transform
|
callable
|
Transform to apply to images. |
None
|
num_channels
|
int
|
Number of channels to use. If None, uses all. |
None
|
Source code in geoai/timm_train.py
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|
TimmClassifier
¶
Bases: LightningModule
PyTorch Lightning module for image classification using timm models.
Source code in geoai/timm_train.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|
__init__(model_name='resnet50', num_classes=10, in_channels=3, pretrained=True, learning_rate=0.001, weight_decay=0.0001, freeze_backbone=False, loss_fn=None, class_weights=None, **model_kwargs)
¶
Initialize TimmClassifier.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
Name of timm model. |
'resnet50'
|
num_classes
|
int
|
Number of output classes. |
10
|
in_channels
|
int
|
Number of input channels. |
3
|
pretrained
|
bool
|
Use pretrained weights. |
True
|
learning_rate
|
float
|
Learning rate for optimizer. |
0.001
|
weight_decay
|
float
|
Weight decay for optimizer. |
0.0001
|
freeze_backbone
|
bool
|
Freeze backbone weights during training. |
False
|
loss_fn
|
Module
|
Custom loss function. Defaults to CrossEntropyLoss. |
None
|
class_weights
|
Tensor
|
Class weights for loss function. |
None
|
**model_kwargs
|
Any
|
Additional arguments for timm model. |
{}
|
Source code in geoai/timm_train.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|
get_timm_model(model_name='resnet50', num_classes=10, in_channels=3, pretrained=True, features_only=False, **kwargs)
¶
Create a timm model with custom input channels for remote sensing imagery.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
Name of the timm model (e.g., 'resnet50', 'efficientnet_b0', 'vit_base_patch16_224', 'convnext_base'). |
'resnet50'
|
num_classes
|
int
|
Number of output classes for classification. |
10
|
in_channels
|
int
|
Number of input channels (3 for RGB, 4 for RGBN, etc.). |
3
|
pretrained
|
bool
|
Whether to use pretrained weights. |
True
|
features_only
|
bool
|
If True, return feature extraction model without classifier. |
False
|
**kwargs
|
Any
|
Additional arguments to pass to timm.create_model. |
{}
|
Returns:
Type | Description |
---|---|
Module
|
nn.Module: Configured timm model. |
Raises:
Type | Description |
---|---|
ImportError
|
If timm is not installed. |
ValueError
|
If model_name is not available in timm. |
Source code in geoai/timm_train.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|
list_timm_models(filter='', pretrained=False, limit=None)
¶
List available timm models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filter
|
str
|
Filter models by name pattern (e.g., 'resnet', 'efficientnet'). The filter supports wildcards. If no wildcards are provided, '*' is added automatically. |
''
|
pretrained
|
bool
|
Only show models with pretrained weights. |
False
|
limit
|
int
|
Maximum number of models to return. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
List of model names. |
Raises:
Type | Description |
---|---|
ImportError
|
If timm is not installed. |
Source code in geoai/timm_train.py
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 |
|
modify_first_conv_for_channels(model, in_channels, pretrained_channels=3)
¶
Modify the first convolutional layer of a model to accept different number of input channels.
This is useful when you have a pretrained model with 3 input channels but want to use imagery with more channels (e.g., 4 for RGBN, or more for multispectral).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
PyTorch model to modify. |
required |
in_channels
|
int
|
Desired number of input channels. |
required |
pretrained_channels
|
int
|
Number of channels in pretrained weights (usually 3). |
3
|
Returns:
Type | Description |
---|---|
Module
|
nn.Module: Modified model with updated first conv layer. |
Source code in geoai/timm_train.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|
predict_with_timm(model, image_paths, batch_size=32, num_workers=4, device=None, return_probabilities=False)
¶
Make predictions on images using a trained timm model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Union[TimmClassifier, Module]
|
Trained model (TimmClassifier or nn.Module). |
required |
image_paths
|
List[str]
|
List of paths to images. |
required |
batch_size
|
int
|
Batch size for inference. |
32
|
num_workers
|
int
|
Number of data loading workers. |
4
|
device
|
Optional[str]
|
Device to use ('cuda', 'cpu', etc.). Auto-detected if None. |
None
|
return_probabilities
|
bool
|
If True, return both predictions and probabilities. |
False
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
Union[ndarray, Tuple[ndarray, ndarray]]
|
Array of predicted class indices. |
probabilities |
optional
|
Array of class probabilities if return_probabilities=True. |
Source code in geoai/timm_train.py
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
|
train_timm_classifier(train_dataset, val_dataset=None, test_dataset=None, model_name='resnet50', num_classes=10, in_channels=3, pretrained=True, output_dir='output', batch_size=32, num_epochs=50, learning_rate=0.001, weight_decay=0.0001, num_workers=4, freeze_backbone=False, class_weights=None, accelerator='auto', devices='auto', monitor_metric='val_loss', mode='min', patience=10, save_top_k=1, checkpoint_path=None, **kwargs)
¶
Train a timm-based classifier on remote sensing imagery.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_dataset
|
Dataset
|
Training dataset. |
required |
val_dataset
|
Dataset
|
Validation dataset. |
None
|
test_dataset
|
Dataset
|
Test dataset. |
None
|
model_name
|
str
|
Name of timm model to use. |
'resnet50'
|
num_classes
|
int
|
Number of output classes. |
10
|
in_channels
|
int
|
Number of input channels. |
3
|
pretrained
|
bool
|
Use pretrained weights. |
True
|
output_dir
|
str
|
Directory to save outputs. |
'output'
|
batch_size
|
int
|
Batch size for training. |
32
|
num_epochs
|
int
|
Number of training epochs. |
50
|
learning_rate
|
float
|
Learning rate. |
0.001
|
weight_decay
|
float
|
Weight decay for optimizer. |
0.0001
|
num_workers
|
int
|
Number of data loading workers. |
4
|
freeze_backbone
|
bool
|
Freeze backbone during training. |
False
|
class_weights
|
List[float]
|
Class weights for loss. |
None
|
accelerator
|
str
|
Accelerator type ('auto', 'gpu', 'cpu'). |
'auto'
|
devices
|
str
|
Devices to use. |
'auto'
|
monitor_metric
|
str
|
Metric to monitor for checkpointing. |
'val_loss'
|
mode
|
str
|
'min' or 'max' for monitor_metric. |
'min'
|
patience
|
int
|
Early stopping patience. |
10
|
save_top_k
|
int
|
Number of best models to save. |
1
|
checkpoint_path
|
str
|
Path to checkpoint to resume from. |
None
|
**kwargs
|
Any
|
Additional arguments for PyTorch Lightning Trainer. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
TimmClassifier |
TimmClassifier
|
Trained model. |
Raises:
Type | Description |
---|---|
ImportError
|
If PyTorch Lightning is not installed. |
Source code in geoai/timm_train.py
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
|